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ABSTRACT 

A rational function with n _> 3 separated variables, i.e. a sum fl(X1) -{- 

f 2 ( X 2 )  + ' ' "  q- fn(Xn) with nonconstant f i ,  is with exception of a special 
case in characteristic p always irreducible, i.e. has an irreducible numerator. 
This theorem was first proved by Schinzel. A different proof in character- 
istic 0 was given by Fried. We carry this proof to all characteristics. As an 
application we determine all rational functions f with an addition formula 

of type f(x) -{- f(y) = f(h(x, Y)) for some rational function h. 

1. I n t r o d u c t i o n  

PROBLEM: Let  k be a field o f  characterist ic p >_ O, let  n >_ 3 be a natural  number .  

For i = 1, . . . , n let  

Fi 
(1) f i  = -~i E k ( X )  \ k gcd(Fi,  Hi) = 1 

be noncons tant  rational funct ions  in one variable, whose degree is given by  

(2) d e g f i  := [ k ( X ) :  k(fi)] = max(deg F i ,deg  Hi) 
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(3) 

with 

We look at the sum of these functions, taken with separated variables, i.e. at the 

rational function 
n 

f(xl, x2,..., = l/(x,) 
i----1 

in n variables. The denominator of f is H(X1,. . .  ,X,~) = I-L~=I Hi(X/), since 

the Hi(Xi) are relatively prime. So the numerator o f f  is 
r 

F(X1, X2, . . . ,  Xn) = Hi(X~). ~ fi(Xi) = Fi(Xi). iH 
i~-I i----1 i = 1  

/H(X1, . . . ,  X(-1, X / + I , . . . ,  Xn) = H/H/(Xi) = U Hj(Xj) 

and has the degrees 

degx~ F = deg fi, 1 < i < n 

We ask if F is an irreducible polynomial, and formulate this question also as 
n 

"Is f = Z f/(Xi) irreducible?" 
i=l  

Example: There is an e x c e p t i o n a l  case, where this is not the case. Let the 

characteristic p be positive and L E k[X] be an additive polynomial of degree 

> 1, i.e. L(X + Y) = L(X) + L(Y) or equivalently, see [L] p. 343, 

m 

(4) L(X) = Z aj Xp~' aj �9 k, m > O, am r O 
j=O 

We say that the given rational functions (fi)l</<~ are c o m p o s e d  with the ad- 

ditive polynomial L, if there are rational functions . f / �9  k(X) such that  

s/(x)=L(],(x)) 
In this case, the polynomial F in (3) is not irreducible: We have 

n 

I(XI,...,X,)=L(E],(X/) ) 
i = 1  

From this and X]  L(X) we get that ] " - X = ~ i=1  ] / ( 4 )  is a factor of f (X1 , . . . ,  X,~) 

or more precisely (cf. w especially lemma 1): The numerator of ] is a proper 

divisor of the numerator F of f ,  so f is reducible. | 
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RESULTS. Geometrically this example is the only exception: 

THEOREM A: Let k be an algebraically dosed field and n > 3. H for 1 < i < n 

the nonconstant rational functions fi given in (1) are not composed with an 

additive polynomial of degree > 1, then the sum 

F ( X 1 , . . . , X n )  
f i (X i )  = H(X1,  -Xn)  

i = 1  

is irreducible, i.e. F is an irreducible polynomial 

Addenda: 1. In the case n = 2 the theorem does not hold as stated, the differ- 

ence f ( X )  - f ( Y )  e.g. always has the divisor X - Y. Indeed this case (cf. [F]) is 

more complicate than the case n > 3 and we do not enter here into its discussion. 

2. the theorem shows that  the polynomial F is always absolutely irreducible. 

3. If k is an algebraically closed field of characteristic p > 0, every additive 

polynomial L of degree > 1 as in (4) has the shape 

L ( X )  = Lo(X)  p + e. Lo(X)  for some e E k 

with some other (additive) polynomial Lo, see IT2]. Therefore in theorem A we 

need only to consider the special additive polynomials X p + cX  and get as an 

equivalent formulation: 

THEOREM A~ Let k be an algebraically dosed field. The polynomial F in (3) 

is reducible, iff ehaxk = p > 0 and there axe c E k and 91 E k ( X )  such that 

f~ = gP + cgi, l < i < n 

4. To formulate the correct analogue of theorem A in case of a non algebraically 

closed field affords the following 

Definition: Let f E k ( X )  be a rational function. For each rational place ~ E 

? l (k )  = k U {oo} and each uniformizing element r ,  e.g. r = X - ( or 7r = X -1,  

we have a power series expansion 

f ( X ) =  ~ ciTr i, 
i----ord~ f 

c~ E k  
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We call the z e r o  th  coefficient Co r e p r e s e n t e d  b y  the function f and denote it by 

f(~; 71"):: C0 

If ~ is not a pole of f ,  we have of course Co = f(~),  but otherwise co depends on 

the choice of ~, not only on ~. | 

Remarks: a) For the properties of f(~; r )  cf. lemma 6. 

b) If ~ is a pole of f of order prime to the characteristic, all elements in k are 

represented by f at this place�9 

c) For an infinite field k there are always ~ E k where f(~) is finite; but for 

finite fields k we may have no finite value at a rational place, and therefore need 

this extended definition of represented elements in theorems B and C. 

d) The elements represented by an additive polynomial L are exactly the values 

of L and form a subgroup kL + of the additive group k+; the elements represented 

by a rational function fi of type (5) in theorem B are contained in a coset of this 

subgroup k + . 

e) A similar statement as d) holds for the functions g in theorem C and the 

rational functions fi of type (5*). | 

5. THEOREM B: Let k be a field and n >_ 3. Suppose that k is perfect i f  

char k = 2. For each i = 1 , . . . ,  n let f i E k( X ) be a nonconstant rational function 
�9 n X and let ci E k be an element represented by f i  Then the sum ~i=1 f i (  i) is 

reducible iff there are an additive polynomial L E k[X] and rational functions 

hl e k ( X )  such that 

(5) f~(X) - c, = L ( h i ( X ) )  for 1 < i < n 
n 

(6) L ( X ) +  Z ci is reducible 
i----1 

More precisely: I f  the numerator F has two distinct prime factors, we find a 

separable L, otherwise we can take L = a X  p with some a 6 k • . 

6. If k is algebraically closed, any nonconstant function has a rational zero, so 

we can take ci = 0, moreover (6) is equivalent to deg L > 1. So theorem A follows 

from theorem B. 

7. THEOREM C: Let k be an imperfect field of  characteristic 2, and n _~ 3. For 

each i = 1 , . . . ,  n let f i  E k ( X )  be a nonconstant rational function and let ci C k 
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be an element represented by fi . Then the sum ~-~i~=a ]i(Xi) is reducible if[ there 

are rational functions g, hi E k( X )  such that 

(5*) f~(X) - ci = g(hi(X)) for 1 < i < n 
n n 

(6") g(X) + Z ci is reducible or Z ci = 0 
i ~ - I  i = 1  

and g is of one of the following types: 

a) g is an additive polynomial of degree > 1. 
X ~ aj i 

b) g(X) - X :  4-------b + ~ (X  2 + b)2~ with aj E k and b e k \ k 2. 

c) g(X) - x2a+ b with 0 ~ a E k and b E k \ k 2 . In this case condition (6*) 

is equivalent to the fact that ~ ci is represented by g. 

In the inseparable quadratic extension field kl = k (v~)  the cases b) and c) can 

be converted to a), since g(T -1 + v~  ) is an additive polynomial 

From the representation (5*) follows in cases b) and c) that the poles of the ra- 

tional functions f~ have residue fields containing kl, especially there is no rational 

pole. Schinzel gave in [$3] no explicit description of g in case b), but remarked 

that  in this case there is no pole at c~. So he could regain his earlier result about 

polynomials [$2, p.53] as special case of his version of theorems B and C. 

8. As an application of theorems B and C we determine all rational functions 

f having an addition formula of type f ( x )  + f ( y )  = f (h (x ,  y)) for some rational 

function h. These are, up to a Moebius transformation, essentially the functions 

L resp. g occurring in theorem B resp. C. The precise formulation is theorem D 

in w 

The paper is organized as follows: In w we give an account of the history of 

theorems A - C, in w we prove the sufficiency of the conditions. w167 show 

that the conditions are necessary. In w we develop some tools from the theory 

of composita of algebraic field extensions, used in the proof of the key lemma, in 

w we gather other ingredients. In w the key lemma in the proofs by Tverberg, 

Schinzel and Fried is shown extending ideas of IF]. In w we give a proof of 

theorem B, in w we complement w to a proof of theorem C. In w we determine 

all rational functions with an addition formula. 
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2. H i s to r i ca l  R e m a r k s  

Ehrenfeucht [E] showed that for n > 2 a complex polynomial of the form 

F(Xt , . . . ,  Xn) = ~ Fi(X~), F~ C C[X] \ C, gcd(deg Fi) = 1 
i----1 

is always irreducible. According to [$3] A. Ehrenfeucht and A. Petezyfiski proved 

this for n = 3 without a condition on the degrees, but the first published proofs 

for this more general result in case n > 3 seem to be those of Schinzel IS1] 

and Tverberg [T1]. Their proofs carry over to arbitrary fields of characteristic 

zero. In IT2] Tverberg extended resp. modified this result in the case n = 3 for 

algebraically closed fields of positive characteristic, giving theorem A ~ in the case 

of polynomials f~. 

In his book [$2, p.53] Schinzel proved for an arbitrary field k the following 

generalization: If for given polynomials Fi E k[T] \ k for i = 1, 2, 3 the sum 

FI(X) + F 2 ( Y ) +  F3(Z) is reducible in k[Z,Y, Z], then there are an additive 

polynomial L E k[T] and polynomials F~ E k[T] such that 

Fi(T) - F~(O) = L(F~(T)), i = 1,2,3 

Jarden asked (and used the answer in [HJ], p.194), if such a result would be true 

if the polynomials are replaced by rational functions, a rational function being 

called irreducible, if its numerator is irreducible. In [$3] Schinzel gave a precise 

answer with a rather long and mainly computational proof, stating theorem B 

with special c~, coming from the expansion of the fi in k((X-i)) ,  and stating 

theorem C in a weaker form. Fried IF] gave in the simpler case of characteristic 

zero another proof, using concepts from Galois theory applied to composita of 

fields. In this paper his ideas are used to settle the general case using a pure 

theory of composita which also settles the inseparable case. 

3. T h e  c ond i t i ons  a re  suff icient  for  t h e  r educ ib i l i t y  o f  F 

Definition: For a rational function f C k(X), say f = AIB with A, B E k[X], 
we denote the o r d e r  of f a t  inf in i ty  as 

ordoo f = deg B - deg A I 
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LEMMA 1: Let R = k[X1, . . . , Xn] be the polynomial ring in n variables over the 

field k. Let U, V ~ 0 be relatively prime polynomials in R with U /V  q~ k. For a 

polynomial A C k[X] in one variable define 

A(U, V) := A(U/V)  . Y degA 

which obviously is in R. Then the following holds: 

a) I f  A(U, V) is constant, then A is constant or there are a, b E k with A = 

a(X - b) d and U - bV a constant. 

b) The substitution A ~-~ A(U, V) preserves products: 

A, B e k [ X ]  ~ ( A . B ) ( U , V ) = A ( U , V ) . B ( U , V )  

c) I rA ~ O, then A(U, V) is relatively prime to V. IrA, B E k[X] are relatively 

prime, then A(U, V) and B(U, V) are relatively prime. 

d) /iF f ---- A / B  and g -- U/V are representations of the rational functions 

f C k (X)  and g E k (X1 , . . .  ,Xn) \ k as quotients of relatively prime poly- 

nomials, and if d = ordoo f ,  then 

(7) f (g)  = A(g___~) = A(U, V______~) . vd  
B(u, v) 

is a representation of the composed function f (g)  as quotient of relatively 

prime polynomials - -  the factor V d in (7) belongs to the numerator or 

denominator according to the sign of d. 

e) Let f = A / B  and g = U/V  be as in d), and assume 

(s) u r k + kv  

Then f(g)  is reducible in each of the following two cases: 

el) f is reducible 

e2) d e g / >  1, f (eo)  = 0 and V q~ k. 

f) The condition (8) is satisfied for rational functions of the form 

fl) g = Z g ~ ( X i )  with g i � 9  2. 

g l (X1)g2(X2, . . . ,  Xn) + b 
f2) g : g l ( X l  ) _ [ _ g 2 ( x 2 , . . . , x n )  with  gl �9 k ( X ) ,  g2 �9 k ( X 2 , . . . , X n ) ,  

both nonconstant, and b �9 k \ k 2. This g is never a polynomial 

d d 

Proob a) If A = a y I ( x - b i )  then A(U, V) -- a I ~ ( U - b i V ) .  This can only be 
i ~ l  i----1 

a constant in the given cases. 
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b) follows immediately from the definition. 

c) The first s tatement  follows immediately from the definition and from 

gcd(U, V) --- 1, the second from this and the fact 

A(X)  . A I ( X ) + B ( X ) . B I ( X )  = 1 ~ A(U, V)AI(U, V)+B(U,  V)BI(U, V) = V d 

with d = degAA1 = deg BB1, if A and B are not constant. 

d) follows from c). 

e) follows from d): A decomposition of A(X)  implies by b) a decomposition 

of the numerator  of f(g),  which is nontrivial under the assumption (8) by a). 

This shows el).  For e2) one has to observe that  in (7) there is now a factor 

V d with d = o rd~  f > 0 in the numerator of f(g).  If A is nonconstant then 

A(U, V) is a second nontrivial factor of the numerator; if A is constant, we have 

d = deg B = d e g f  > 1, so V 2 divides the numerator  of f(g). 

fl) Adjoining X 3 , . . . ,  Xn to k and replacing 92 by g2 "{- Ei>2 gi(Xi) we may 

assume n = 2, so 

UI(X1) U2 (X2) 
g ~-~ gl(Xl) -~ g2(X2) -- VI(X1------- ~ -~- V2(X2-------- ~ 

U~ V2 + ViU2 U 
YlY2 v 

We have to show that  an equation U = aV + b is impossible. If we write it in the 

form U1V2 + VI(U2 - aV2) = b, from U1/V1 ~t k follows that  the coefficients V2 

and U2 - aV2 of this linear representation of b have to be constants, so U2 and 

V2 would be constants, a contradiction to g2 ~ k. 

f2) As in fl) we may assume n = 2. Then 

U1 g2(X2) = /-72 gig2 +__..b = U1U2 + bV1V2 U 
g l ( x ~ )  = V~ ' V~ =:* g - ol + g2 v~y~ + y i v ~  = V 

An equation U = cV + d with c, d E k would lead to 

ul(xl). [ v ~ ( x 2 )  - cy~(x~) ]  + v~(xl). [by2(x~)  - cu~ (x~) ]  = d 

As in the proof of fl) follows from U1/V1 ~ k that  U2 - cV2 and bV2 - cU2 are 

constants. The determinant of these two linear forms in U2 and V2 is b - c 2, so 

nonzero by assumption, so U2 and V2 have to be constants, a contradiction to g2 

k. The last remark, claiming the impossibility of an equation UI(X1)V2(X2) + 

VI(X1)U2(X2) = const., is proved in the same manner. | 
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Sufficiency in Theorem B: From (5) and the additivity of L we get with h = 

E~ n ,  h~(X~) 

(9) k ( X i )  = [L(hi(Xi)) + ci] = L(h) + Z c~ 
i = l  i = l  i = l  

F~om assumption (6) we know that  L(X)q-~ in l  ci is reducible in k[X]. By lemma 

1.el/fl  with g -- h we conclude that L(h)+ ~ = 1  ci is reducible in k ( X i , . . . ,  Xn). 

So from (9) we get the reducibility of ~-~i~l f i(Xi).  | 

Sufficiency in Theorem C: The above proof holds for the case a) of theorem C. 

To prove the other two cases, we have to get some equivalent of the additivity of 

L for the functions g in the cases b) and c) of theorem C. This is done in lemma 

2 for two summands, in lemma 3 for n summands. 

LEMMA 2: Let k be a field of characteristic 2. 

a) For b E k and variables x, y over k the following holds: 

x y + b  1 1 1 
(10) z -  - -  - -~  - - + - -  - - -  

x + y  x 2 + b  y2+b  z2+b  

(10') x y z 
x2 +-----~ + y2 + ~  - z 2 +------~ 

b) The rational function 

( 1 1 )  f(X) - ao + aoX ~ aj 
X 2 + b + j=l (X2 + b):~ 

in k (X)  satisfies for variables x, y the addition formula 

x y + b  
(12) ~(x) + e(y) = ~(z) with z - - -  

x + y  

Proof of a): Direct verification: 

x y (x + y ) (xy+ b) z 
x 2 + b y2 + b (xy + b) 2 + b(x + y)2 z 2 + b 

gives (10'), and (10) follows from this by applying 0 + b-~y" | 

Proof of b): By iterated squaring of (10) we see from a) that each summand of 

g(X) satisfies (12), therefore also the sum g(X). | 
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LEMMA 3: Let n >_ 1. The function f ( X )  from (11) satis/ /es for variables 

x l , . . . ,  x~ over k the addition formula 

n 

Ze(x,) =e(zn) 
i=1 

with 

Zn 

Ln/2J 

O.n_2ibi 

An (x l ,  �9 �9 �9 x~) _ i=o a,~ + baN- 2 + " "  
B n ( x l , . . . ,  x~) [(n-1)/2J an-1 + ba~-3 + . . .  

Y ~  6rn-  l - 2i b i 

i=0 

where 

~ .  Xi l  " " " 6r r Xi~ 

l~_il < . . .< i r~n  

is the r th  elementary symmetry function o f x l , . . .  , x ~ ,  so a0 = 1 and  a~ = 0 

for r < 0 o r r > n .  

Proof by induction: The  case n = 1 is t r iv ia l ,  the  case n = 2 is l e m m a  2.b. 

Assume  the  c la im holds for n summands .  Then  we have by l e m m a  2.b and  

induc t ion  hypothes is  

n + l  
Xn+ l Z n "4- b 

~ '~ l (x , )  = g(z,~+l) wi th  zn+l  - 
i=1 Zn q- X n + l  

Denot ing  by  a~ the  e l emen ta ry  symmet r i c  funct ions of x l , . . . ,  xn and  by  ~ the  

e l emen ta ry  symmet r i c  funct ions of x l , . . .  , x n + l  we have the  s imple  recurs ion 

formulas  

X n + l  " O'r Jr" O'r+l = ~ r+ l~  r E Z 

W i t h  these we get  

xn+lA,, + bBn _ ~ i  xn+la,  -2~bi + Y~i a,,-t-2~ bi+l 
zn+l = AN + x~+tB~ - ~,i  a~-2i b~ + ~ i  Xn+lan-l-2i bi 

~ i ( xn+ l~yn-21 + fin+l-21) bi _ Y~i ~rn+l_2ibl __ An+t 
~i(a,~-2i + x n + l a n - l - 2 ~ ) b  i Y~i ~,,-2ib i B,~+I 

which ends the  induct ion  step.  | 



Vol. 85, 1994 IRREDUCIBLITY OF FUNCTIONS WITH SEPARATED VARIABLES 145 

End of the sufficiency proof." If ~ is one of the functions in case b) or c) of 

theorem C, it has the form (11). By lemma 3 we get from (5*) a formula 

n 

(9") f , (X~ )=g (h )+Ec ~  w i t h  h : z n ( h l ( X l ) , . . . , h n ( X n )  ) 
i = 1  i=1 

By assumption (6*) we have to distinguish two cases: The first case is c := 

EiL1 Ci ~ O and g(X) + c reducible. Because of h = z(hl ,  Zn-l(h2,..., hn)) 
we can apply lemma 1.el/f2 with gl = hi and g2 = z ~ - l ( h 2 , . . . ,  h~) to get the 

reducibility of ~(h) + c. By (9*) the reducibility of ~ = 1  fi(Xi) follows in the 

first case. To settle the second case c = 0 we have by (9*) to show that s is 

reducible. By the assumptions in theorem C we have degs > 1 and g(co) = 0, 

moreover z~-l(h2,.. . ,  hn) = z(h2, zn-2(h3 . . . .  , h~)) is not a polynomial for n > 

2, as remarked at the end of lemma 1. So the reducibility of g(h) follows from 

lemma 1.e2/f~ with gl and g2 as in the first case. | 

4. Composita of algebraic field extensions 

Let K be a field of characteristic p _> 0 with a fixed algebraic closure /~. An 

algebraic extension K1 of K can be embedded into K,  but  such an embedding 

T : K1 ~-~ /~ is determined only up to applying an automorphism a E G/( = 

Aut( /~lK ), i.e. up to switching from 7 to Ta, thereby replacing the subfield K~ 

of/~" by the conjugate field K~ ~ If K1 is already a subfield o f / ~ ,  then the 

K-embeddings of K1 in to /~  correspond to the cosets in GK1 \GK �9 
Let now K1 and K2 be two finite algebraic extensions of K which we always 

suppose to be subfields of /~ .  

Det~nition: A c o m p o s i t u m  of the fields K1 and K2 over K is a pair (al ,  a2) E 

(GK~\GK) • (GK2\GK) of K-embeddings of K1 and K2 into K.  The pairs 

(al,  a2) and (ala, a2a) with a e GK are called i s o m o r p h i c  composita. | 

Alternatively a pair (al ,  a2) of K-embeddings a~ : Ki ~-~ /~ induces a K- 

algebra homomorphism 

iT1 | : g l  |  ~ [(~, Xl Qx2  e--+ x~ 1 .x~ 2 

and conversely any such homomorphism induces a compositum of K1 and K2 
/ ! 

over K. Two composita (al ,  a2) and (al,  a2) are isomorphic iff the kernels of the 

associated maps al  | a2 and a~ | a~ coincide. These kernels are prime ideals of 
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KI | and all prime ideals p E Spec(K1 •KK2) occur as such kernels since 

K1 | is algebraic over K,  so (K1 | can be embedded into/~.  

Therefore the number of different composita of K1 and K2 over K is given 

by 

a ( g l ,  K2 Ig)  := # Spec(K1 | 

and this number equals the number of double cosets in GKI\GI(/GK2, which 

is used in IF]. Since K1 | is a finite dimensional K-algebra, this number is 

finite and we have, cf. [L], p.250 or 258, a direct decomposition into local artinian 

rings 
~(K1,K~ IK) 

K1 | = ~ L~, Li local 
i=1 

We will use here the following simple facts about the number a(K1, K2 ]K): 

(C1) Let K1 = K(a) be a simple extension and f �9 K[X] be the (monic) 

minimal polynomial of a over K,  such that K1 -~ K[X]/(f). Then by the Chinese 

remainder theorem one has 

r 

f = H f ; '  in K2[X] ==~ K1 | ~-- K2[X]/(f) ~ ~ K2[X]/(f.~') 
i=1 i = l  

where fi are the different irreducible factors of J in K2[X] and the exponents ei 

are 1 or powers of p. Therefore we have 

n(K1, K2 IK) = r = # {irreducible factors of f in K2[X] } 

and if ~(K1, K2 [K) = 1, then K1 | has a nontrivial radical iff f E K2[X] p. 

msep resp. r,-sep be the separable parts of the field extensions KI[K (C2) Let --1 -'2 

resp. K2]K. Because homomorphisms from rings to fields extend uniquely to 

purely inseparable extensions, we have 

/~k~'l '~'2 I K) 

(C3) If K1 or K2 is separable over K,  then K1 | has no radical, so is a 

direct sum of fields. In this case 

~(K1, K2 ]K) - 1 ~ K1 | is a field 

r K1, K2 linearly disjoint over K 
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(C4) If K~ C K1 is a smaller extension of K, one has 

(13) ~(K~, K2 [K) _< a(K,, K2 [K) 

Equality holds in (13), if all residue fields of K~ | are linearly disjoint from 

K1 over K~. 

Proof: This follows from 

6 KI1 | = Li ~ K1 | = ~ K 1  @K'~ Li 
i----1 i----1 

(C5) If K1 and K2 are simple extensions of K with ~(K1, K2 [K) = 1 and 

K1 | has a nontrivial radical, then each Ki contains exactly one inseparable 

extension L~ of degree p of K, and L1 ~---g L2. 

Proof: Let K1 = K[X]/ ( f )  with f monic. If K1 | is local with nontrivial 

radical, then (C1) implies that the coefficients of f become pth powers  in K2. 

Let L2 be the subfield of K 2 ,  generated over K by the pth roo t s  of the coefficients 

of f .  Since a subextension of a simple extension like K2 [K is simple (this follows 

from [L], theorem VI.6.1), we see that [L2 : K] = p and L2 is the only inseparable 

extension of K in K2 of degree p. Then K1 | L2 has a nontrivial radical, so 

its only residue field is K1, therefore K1 contains an isomorphic copy L1 of the 

K-algebra L2. | 

For later convenience we restate (C1) and (C5) in a special case: 

LEMMA 4: Let fl ,  f2 be rational functions as in (1). Then the equations 

f l ( X l )  : y = f2(x2)  

define two algebraic extensions K1 -- k(Xl) and K2 -- k(x2) of the rational func- 

tion field K = k(y), and the number of irreducible factors of the numerator 

N(X1, X2) = FI(X1)H2(X2) - HI(X1)F2(X2) of the rational function fl(X1) - 

f2(X2) equals the number a(K1, K2 [K) of composita of the two algebraic exten- 

sions of K. Moreover if g(K1, K2 [K) = 1 then K1 | has a nontrivial radical 

iff N is inseparable (namely a pth power up to a constant) if[ the fields Ki both 

contain {fYo, where Yo is some linear fraction in y. 

Proof: Since F2(X2)-YH2(X2) is irreducible in K2[X2, Y], the minimal polyno- 

mial f of x2 over K is F2 (X2)- yH2 (X2) up to a factor. Over KI this polynomial 
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becomes essentially N(X1,  X2), and the lemma follows from (C1). The last state- 

ment follows from (C5) and its proof, since the coefficients of f are linear fractions 

(ay + b)/(cy + d) with a, b, c, d �9 k. | 

The following essential result about counting composita we take from [F], 

but replace the geometric language there by a pure field theoretic formulation 

(which seems to be more appropriate) and remove group theory from the proof 

(which shortens the proof): 

LEMMA 5: I f  K1 and K2 are finite algebraic extensions of K,  then there are 

separable subextensions K '  1 and K~, which have the same Galois hull over K 

and the same number of composita over K as the given fields K1 and K2,  in 

formulas: 
K C_ K~ C K~, K~]K separable, i = 1, 2 

KI = K~, t~(K1, K2 ]K) = ,~(Ki, K 2 [K) 

where the normal hull K '  of an algebraic extension K ' [K is the smallest normal 

extension of K,  containing K p . 

Proof." By (C2) we may assume that  the extensions Ki[K are separable for 

i -- 1, 2. If K1 = Ks ,  we are done. Otherwise we may assume Kx ~ Ks .  Take 

L1 = K1 N K2 < K1 �9 Since K2[K is Galois, the fields K1 and K2 are linearly 

disjoint over L1, so all residue fields of L1 | K2, being subfields of K2 and 

containing LI ,  axe linearly disjoint from K1 over L1. From (C4) we get 

~(K1, K2 IK) = ~(LI, /(2 IK) 

with L1 < K1. Continuing this procedure we come to the conclusion of the 

lemma. | 

5. O t h e r  ing red ien t s  

In this paragraph we state some auxiliary facts. Lemma 7 is only used in the 

proof of lemma 8 which takes its motivation from the key lemma 9, whose proof 

uses Gordan's theorem. 

THEOREM OF L/~IROTH/GORDAN (1876/1887, see [$2, p.6/9]): Let LIK be a 

field extension of transcendence degree 1 which is contained in a rational function 

field, i.e. in a purely transcendental extension K(X1, X2 , . . . ,  X,~)[K. Then L = 

K( t )  is itself a rational function field. 
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LEMMA 6: The symbol f ( ( ;  ~r) for the zero ~h coefficient of the expansion of a 

rational function f E k ( X )  at a place ~ with respect to a uniformizing element 

~r, as defined in 1.4, has the following properties: 

a) It is linear in f : For fl, f2 E k(X) and A1, A2 E k holds 

(Alfl + A2f2)(~; 7r) = Alfl(~; 7r) + A2f2(~; 7r) 

b) I f  chark = p then f(~;~r) v = fP(s [But otherwise it does not behave 

well under multiplication, and therefore not under composition of rational 

functions.] 

c) From a) and b) follows that an additive polynomial L E k[X] satisfies 

L(f(~; 7r)) = (L o f)(~; ~r), f E k(X) 

Proof: Immediate computation. | 

LEMMA 7 (MULTINOMIAL COEFFICIENTS): For i = 1 , . . . ,  r let ni >_ 0 be natural 

numbers with sum n. Then the coefficient of X~  1X~ 2 . . .  X~  ~ in the polynomial 

(X1 + X2 + ""  + Xr)  n is the natural number 

nl n2 ""  nr nl!n2!" ..n~! 

It is not divisible by the prime p, if? no carry over occurs in the summation 

nl Jr n2 -k . . .  -~ nr , done in the p-adic representation of the integers ni �9 This 

condition means that the p-adic digits of the sum are the sum of the p-adic digits 

of the summands. A trivial example for this case is 

n = O + . . . + O + n + O + . . . + O  

and exactly i f  n is a power of  p these are the only examples for a sum n without 

carry over. 

Proof" If ordp denotes the p-adic valuation on rational numbers, i.e. the exponent 

ofp  occurring in the prime factorization, one has the well known formula, cf. e.g. 

[H], p.263, 

(14) ordv(n!) - n - sv(n) 
p - 1  
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where sv(n) is the sum of the digits in the p-adic representation of n. In the case 
r n = ~ i=1  ni we have 

0 <  ordp ( n ) =  ordp(n!) - ~2~ ordp(ni,) 
nl n2 . . .  nr i--1 

and from (14) follows 

sdn) < 
i = 1  

with equality iff the multinomial coefficient is not divisible by p: 

n ~ 0 m o d p  ~ Sp(n) = sp(ni) 
f /1  n 2  . ' '  ?2r i = l  

The right hand side is an equivalent of saying that  no carry over occurs in the 

p-adic summation of the n i .  This shows lemma 7 and the following corollary. 

| 

n l n 2  . . .  n~ t u rn  ~0 . . .  0 ~ O m o d p  
with 

m -= ni, ---- hi, O< s < r 
i = l  i = s q - 1  

LEMMA 8: I f  G E k[T] \ k is a polynomial and fi E k (X )  \ k are rational func- 

tions for i = 1 , . . . , m  with m > 1 and h E k ( X l , . . . , X m )  such that 

m 

(15) G ( h ( X l , . . . ,  Xm))  = E f i (X i )  
i--=1 

then we have a decomposition 

m 

(16) h ( X b . . . ,  Xm)  = E hi(Xi)  
i = l  

with hi E k (X )  for i = 1 , . . .  , m  and G - G(O) is an additive polynomial. 

Proof." Since the decomposition (16) is unique, if it exists, up to additive con- 

stants, we may assume the field k to be algebraically closed. From (15) follows 

that every pole of the rational function h is a pole of one of the rational functions 

f i (Xi ) .  Therefore h is of the form 

A ( X I , . . . , X m )  
h ( X l , . . . , X m )  = BI(X1) . .  .Bin(Kin) 



V(fl. 85, 1994 IRREDUCIBLITY OF FUNCTIONS WITH SEPARATED VARIABLES 151 

with polynomials A and Bi .  Since k is algebraically closed there are substitutions 

Xi := Xi - (i, h := h - T and G(t) := G(t + r)  such that  

] ~ ( 0 ) = 0  , so B i ( 0 ) r  and h ( 0 , . . . , 0 ) = 0  

Thus G(0) = 0 and we can write h as a power series in X 1 , . . . ,  Xm. Putt ing 

hi{Xi) := h (0 , . . .  ,X i , . . .  ,0), we get fi = G(h~). Let 

~(x~,..., x~) := hix~,.. . ,  x~) - ~ h,(xd 
i=1 

Then r is a rational function whose denominator divides that  of h and which 

satisfies r ( 0 , . . . ,  X i , . . . ,  0) = 0. Hence each monomial in the numerator  of r is 

divisible by at least two variables, so that  we may write (the fraction need not 

be reduced) 

C(X1,... ,Xm) 
(17) r = B I ( X 1 ) "  "'Bm(Xm) w i t h  C = ~ P i j X i X j  

i < j  

We have to show that  r = 0. Otherwise some variable occurs in r, say X1, and 

r, as a rational function in X1,  has a pole which may be a zero ( of B1 or ec. 

By a transformation X1 := ( + Xi  -1 in the first case we may assume X1 = oc 

to be a pole of r. From (17) we get power series expansions in R((X~I)) with 

R = k[ [X: , . . . ,  X~]]: 

(18) r = coX[~ {- d o X ~  ~  -t- " ' ,  h i  = ClX[ 1 "1- dlX[ ~-1 + ' "  

with descending exponents, eo > 0, el �9 Z, cl �9 k • and co �9 p \ { 0 }  where 

p = (X2 . . . . .  X,~) is the maximal  ideal of R. We develop the polynomial G as 

(19) c ( Y o  + Y~ + . .  . + Y ,n)  = ~ O,o,l ~,~ Ydo . . .  Y', ,  ~ 

(ioQ...i,.,~)EJ 

where the finite index set J C_ 1~o +1 with No ~- {0, 1, 2, 3 , . . .  } contains only the 

indices (i) with a(1) r 0. Then J is symmetric,  contains (dO. . .  0) with d = deg G 

and satisfies the condition 

(20) ( i 0 i l . . . im)  �9 J ~ ( j i l 0 . . . 0 )  �9 J 
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with j = io + i2  "k �9 �9 + i m  by the corollary of lemma 7. We substitute Y/ := hi 

and Y0 := r in (19) to get 

(21) c(h(Xl,�9 �9 Z io im �9 = a(i)r h 1 . . . h  m 
(~)eJ 

Substituting the expansions (18) into equation (21) we get a representation of 

G(h) as power series in R((X~I)). By (20) the highest powers of X1 in G(h) come 

from elements of type (ioi10. . .  0) �9 J ,  i.e. from 

riOh~, ~o ilX~Or162 + . . .  e 0 c 1 

The elements e~X b in the leading terms are linearly independent over k since 

0 r Co �9 p. Choose (io,il) �9 N~ such that 

io > 0 (ioilO... O) E J ioeo + i lel  = e maximal 

�9 io i l  From (d0 , . .  0) E J follows e > 0. The leading term L = CC~o~ of a(i0ho...o)r hi 

with c E k x cannot cancel against any other term in (21): First no other term 

in (21) starts with a higher power of X1 - -  except possibly the summands h~ I , 

however they are in k((X;-X)), so cannot cancel against L. Secondly we have 

already seen that the leading term L is linearly independent from other leading 

terms c~X~ with a ~ i0 and the same exponent e in (21). Since L does not 

cancel, in G(h) occurs a term CC~o~ with i0 > 0 and e > 0. This contradicts 

equation (15), by which G(h) E k((X11)) + k (X2 , . . . ,  Xm), since co �9 p \ { 0 ) .  

This contradiction shows r = 0 and gives the equation (16)�9 

To show that G - G(0) is additive we first remark that  (15) and (16), 

putting Xj  = 0 for j ~ i, together with fj(O) = 0 implies G(hi) = f i (Xi) .  

Now look at equation (21) with r = 0. All the summands h~11h~22 ...h~m "~ are 

linearly independent over k, since the hi(Xi) are algebraically independent over 

k. Therefore the equation (15), i.e. 

m 

E a(1) h~ �9149 = E G(h,) 
(i)eJ i=1 

can only hold, if all elements in J have at most one non zero entry. By lemma 7 

this implies that all positive exponents occurring in the polynomial G are powers 

of p. This gives the additivity of G - G(0). | 
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6. T h e  K e y  L e m r n a  

We now take the first step to draw conclusions from the reducibility of the nu- 
n merator F of ~ i=1  fi(X~) with n _> 3. We distinguish two cases: If F has two 

different prime factors, we speak of the first case. The second case is an F which 

is up to a constant a nontrivial power of an irreducible polynomial. The following 

key step in the proof of the theorems shows that the reducibility of F implies a 

functional decomposition of the sum of all but one of the fi(X~). 

KEY LEMMA 9: Let F be the polynomial of (3). 

1. CASE: I f  F has more than one prime factor, then there is a separable ra- 

tional function g C k (X )  of degree >_ 2 and a rational function h E k(X2, .  . ., Xn)  

such that 

(22) g ( h ( X 2 , . . . ,  X~)) = ~ :~(X~) 
i = 2  

and 

(23) g(Z) -{- f l ( X l )  is reducible 

2. CASE: I f  F is up to a constant factor a nontrivial power of  an irreducible 

polynomial, the above assertions (22) and (23) are true with g (X)  = I (X  p) for 

some linear fractional function l(t) = (at + b)/(ct + d) with a, b, c, d E k and 

ad ~ bc. In this case the reducibility claim (23) can be formulated as: There is 

an hi ~ k ( X )  such that f l ( X )  = - g ( h l ( X ) ) .  

Proof of  1. case: F has more than one prime factor. Let k ~ = k (X 3 , . . . ,  Xn) and 

apply lemma 4 to the two rational functions - f l  (X) and f2 (X) + ~ i~3  fi (Xi) 

in k '(X): The equations 

n 

+ = y = 

i=3 

define two algebraic extensions K~ = k'(Xl) and K~ = k'(x2) of K'  = M(y), 

and the irreducible factors of the numerator F of f = f l (X1)  + . "  + f,~(Xn) 

correspond to the composita of K~ and K~ over K' .  From the assumption of the 

first case follows that there are at least two different composita of K~ and K~ 

over K' .  By lemma 5 we can replace K~ by separable subfields K~' D K with 

(24) K~' = K~' and n(g{', g~' [g') > 1 
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From K~' = K '  we get ~(K~', K~' [K') = 1 

by (C1); therefore [K~': K'] > 1. Now the 

Galois hull K~' of K'I'IK' is contained in the 

separable part Kg of the splitting field Ki  

of the minimal polynomial �9 = F1 + yH1 

for Xl over K ~. Since r has coefficients 

in K = k(y), the Galois extension K'clK' 

is a constant field extension of the Galois 

extension KoIK, where Kr is the separa- 

ble part of the splitting field K1 of �9 over 

K.  Since K '  = K ( X 3 , . . . ,  Xn)IK is purely 

transcendental, the extensions Kr  and K '  

are linearly disjoint over K,  so we have 

'r ' ot ............ t = - t  K; 

I I ................. 
k .... k I 

Gal(Kr IK) = Gal(K~ IK') 

and the intermediate fields of these extensions correspond bijectively. By the 

equation in (24) we have K~' C_ K~' = K~' C_ K~, so the field K~' has the 

form K~' = K 4 ( X 3 , . . . , X n )  with some separable extension K41K. Since K41k 

is a function field of one variable, contained in the rational function field K~ = 

k(x: ,  X 3 , . . . ,  X,~)lk, by Gordan's theorem it is itself rational over k. So we have 

K4 = k(z) D_ k(y), which gives an equation y = g(z) with a separable rational 

function g e k(X) of degree [ g 4 :  K] = [ g ~ :  g ' ]  > 1. From z e K~ we get a 

rational function h E k (X2 , . . . ,  Xn) such that z = h(x2, X 3 , . . . ,  Xn). Together 

we get 
n 

+ Z f , ( x , )  = y = g(z) = g(h(x , x 3 , . . . ,  xn))  
i----3 

so equation (22). Since K~ = k'(xl) and K~' = k'(z) have by (24) more than 

one compositum, by lemma 4 the numerator of g(Z) + fl(X1) is reducible over 

k ~ and so over k. Now all claims are proved in the first case. 

Proof of 2. case: In this case we have a(K~, K~. IK') = 1 in the notation of the 

proof of the first case, so by the last part of lemma 4 the polynomial F is up to 

a constant factor a p t h  power. We modify the proof of the first case as follows: 

Lemma 4 shows that K~ and K~ both contain a unique subfield K~ ~ , inseparable 

of degree p over K ~. Since the algebraic extension K~IlK ~ comes from the simple 

extension K1 = K(Xl)IK, given by r = 0, by a purely transcendental base 
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extension K'IK,  the lattices of intermediate fields of K~ I K '  and K1 I K correspond 

bijectively to each other, preserving inclusions, degree, separability: Intermediate 

fields Ko of K I l K  correspond to the monic divisors (I)o of (I) in KI[X], having the 

zero Xl and being irreducible in the field Ko generated over K by its coefficients; 

over K ~ the same polynomials r occur, which proves the claim. So the field K~ ~ 

comes from a unique subfield/(4 C K1, inseparable of degree p over K. As above 

we get K4 = k(z) and y = g(z) with g inseparable of degree p, so g(z) = l(z p) with 

a linear fractional function I. As above we come to equation (22). From z E K1 

we get some hi E k ( X )  with z = hi(x1), so f l (Xl )  = - y  = - g ( z )  --- - g ( h l ( x l ) ) .  

This implies (23). | 

7. P r o o f  o f  t h e o r e m  B (Necess i ty )  

We take the common assumptions of theorems B and C: There are at least 

three non constant rational functions fi  E k (X) ,  represented elements ci E k 
n X and the sum ~ = 1  f i ( i )  is reducible. We start from the key lemma to get an 

equation (22) which we will exploit now. Differentiating equation (22) we get for 

i = 2 , . . . , n  

(25) g ' (h(X2 , . .  X n ) ) .  h(i)(X2,. Xn)  = f~(X~) with h (1) - Oh 
"' ""  - OXi 

with g' ~ 0 in the first case and g' = 0 in the second case. 

In lemma 10 and propositions 11 and 14, which belong to the first case of 

the key lemma, we will assume that 

f~(Xi) r O, 2 < i < n 

Namely fr = 0 implies by (25) that  h (i) = O, so ]i and h are functions in X p. By 

an iterated change of variables of type X~ := Xi in (22), which does not change 

g, we come to the above assumption. 

In the following lemma and its proof we use the notion of degree of a rational 

function as defined in (2). 

LEMMA 10: A separable rational function g satisfying equation (22) satis/]es 

deg g~ _< 2 

Proof'. Taking the partial derivative of 

A ( X 2 , . . . ,  Xn)  
h ( X 2 , . . . , X n )  = B---(-~2,-: ,Xn)  gcd(A,B) = 1 
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with respect to X2 we get, writing h (~) for Oh/OX2, 

h ( 2 ) -  A (2) A B  (2) 

B B 2 

Hence 

Isr. J. Math. 

(26) degx3 h (2) < 2" degx3 h 

The equation in (25) with i = 2 has a right hand side f~ free from X3 (remember 

that  we can assume f~ # 0), therefore we have 

degx3 f ( h )  = degx3 h (2) 

Together with (26) we get 

deg g' = = _ " �9 degx3 h degx 3 9'(h) degx3 h (2) < 2 degx3 h 

Dividing through degx3 h gives the lemma. | 

PROPOSITION 11: Let k be'a field and let k be perfect if  chark = 2. Then 

a separable rational function 9(t) satisfying (22) has after a linear fractional 

transformation in t the derivative 

g ' ( t )  = 1 

Proof: A linear fxactional transformation 

a t + b  U 
l(t) = ct + d = -~ a,b,c, d E k, a d -  bc = A # O 

transforms equation (22) into an equation of the same shape via g o h = 91 o hi 

with g~ = 9 o I and hi = 1-1 o h. By lemma 10 we have deg9~ < 2. Moreover, 

with 9' = A / B  we have by the chain rule and (7) 

A _ A .  A(U, V) . vdes B-deg A-2 
(27) g~(t) = 9'(l(t)) . (ct + d) 2 B(U, V) 

We first show that  the numerator A of 9' has to be a constant�9 Otherwise choose 

a transformation l such that  c # 0 and B(a/c)  # O, perhaps enlarging the base 

field k if k = F2. From 

B ( X )  = Z a i X '  ==~ B(U ,V)  = ai(at+b)i(ct+d) m-i  = B(a/c)cmt'~+ . . .  
i=0 i=0 
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follows that  deg B = deg B(U, V). But a nonconstant A leads in (27) to g~ having 

a denominator B(U, V) �9 V 2+deg A-deg B of degree 2 + deg A > 2, contradicting 

degg~(t) _< 2. 

Moreover as a derivative of a rational function g~ cannot have a simple 

rational pole, so by lemma 10, i.e. by deg B _< 2, either f ( t )  = a # 0 is constant 

or g' is of the shape 

b 
g'(t) - (t + c) - - - - - ~  ' 0 • b, c E k 

[here we use that k is not imperfect of characteristic 2, because in this case also 

the possibility g' = a(t 2 + b) -1 with b ~t k 2 has to be considered.] The linear 

fractional transformation l(t) = a - i t  or l(t) = - c  + bt -1 then gives g~ = 1. 

| 

COROLLARY 12: I f  k has characteristic zero, then equation (22) with degg _> 2 

is impossible, so theorem A is true. 

Proof" If char k = 0, from proposition 11 follows that g is a linear polynomial. 

This contradicts the assumption deg g > 1 in the key lemma. So equation (22) 

is impossible which means that F is always irreducible. | 

Convention: In the following we have char k = p > 0. | 

COROLLARY 13: The equation (25) has in the case of proposition 11 the form 

(25*) h ( 0 ( X 2 , . . . , X n )  = f~(Xi) with h( 0 = Oh 
OX~ 

PROPOSITION 14: The rational function g of proposition 11 is a polynomial. 

Proof'. Otherwise g has a finite pole, we may take this pole to be t -- 0, assuming 

k to be algebraically closed. From h = A / B  we see that  any irreducible factor A1 

of A gives a pole A1 -- 0 of g(h) : ~ fi(Xl). Then A1 has to be a divisor of the 

denominator Hi(Xi)  of some fi, and therefore AI -- A l ( X i )  is a polynomial of 

one variable. So A = 1-L~2 Pi (x i )  is a polynomial with multiplicatively separated 

variables, so h(0 is divisible by Pj for j ~ i. From equations (25*) we see that  the 

numerator of f~(Xi) is divisible by Pj (X j )  for all j ~ i, which is only possible if A 

is a constant. But h = l I B  gives h (~) = - B ( O / B  2. Now h and so B depends on 

all variables Xj.  This dependence cannot vanish in the quotient B( i ) /B  2, since 

degxj B(0 _< degxj B < degx~ B 2. For i r j this dependence contradicts (25*). 
| 
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PROPOSITION 15: Let k be a field and let k be perfect i f  chark = 2. Then in the 

second case of  the k e y / e m m a  the rational function g can be taken as polynomial 

g ( X )  = aXP + c. 

Proof: If k is perfect, then by the key lemma g has the shape g = l (X )  p with a 

linear fractional function l, so in equation (22) we can replace g by X v and h by 

l(h). Now let k be imperfect, especially infinite. Translating the X i ,  the fl and 

g by additive constants, we may assume that  h ( 0 , . . . ,  0) is defined and fi(0) = 0. 

If g is not a polynomial it can be written as g(X)  = ~ + c. If b = bo p we get 

g ( X  -1 - bo) = a X  p q- c, which gives the claim. Now assume b ~ k p. From (22) 

follows 

f i (X i )  = g(hi (Xi ) )  with hi = h ( O , . . . , X i , . . . , 0 )  

With hi(Xi)  = A i ( X i ) / B i ( X i )  and gcd(Ai, Bi) = 1 we get 

aB~(X2) aBe(X3) 
(28) h (X2)  + f3(X3) = A~(X2) + bB~(X2) + AP(X3) + bB~(X3) + 2c 

The denominator of the right hand side is, up to a multiplicative constant, 

(29) (A~ + bB~)(A~ + bB~) = C p + bD p + b2E p 

with C = A2A3, D = A2B3 + B2A3 and E = B2B3 being linearly independent 

over k. This can be seen as follows: 

AC + #D + v E  = 0 ==~ A2(X2) �9 (AA3 + #B3) = B2(X2) �9 (#A3 + vB3) 

Since A2/B2 ~ k this implies )~A3 + #B3 = 0 = #A3 + vB3.  From A3/B3 ~ k 

follows ,~ = # = v -- 0, which ends the proof of the linear independence of 

C, D, E. If p > 2 the powers 1, b, b 2 are linearly independent over It(X2, X3) p. 

Therefore the denominator (29) of (28) can never be a constant multiple of some 

Fp + bGP. But from (22) follows 

a 
h ( x = )  + h ( x a )  = + 

h(X2, X3, 0,. �9 0)p + b 

Thus b ~ k p and p > 2 leads to a contradiction. | 
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PROPOSITION 16: Let k be a t~eld and let k be perfect if'char k = 2. After  a/ /near  

fractional transformation of  the variable of g we get for the rational functions g 

and h in (22) that 

(30) h ( X 2 , . . . ,  X,~) = ~ hi(Xi)  
i=2 

and G ( X )  = g (X)  - g(O) is an additive polynomial. 

Proof'. Propositions 14 and 15 assert that g becomes a polynomial after a linear 

fractional transformation. An application of lemma 8 to the equation (22) gives 

(30) and the additivity of G. | 

End of the Proof  of Theorem B: We have to find an additive polynomial L and 

rational functions hi with (5) and (6). By proposition 16 the equation (22) has 

now the form 

n n 

i=2 i=2 i=2 

Therefore there are constants di E k such that 

G(hi(Xi))  = f~(Xi) + di , 2 < i < n 

By assumption there exists a rational place ~ of k ( X )  and a uniformizing param- 

eter 7r such that ci = fi(~; 7r). By lemma 6.c we get with ui = hi((; 7r) E k 

G(ui) = ci + di , 2 < i < n 

Subtracting the last two equations and replacing hi := hi + ui we get 

(31) G(hi(Xi))  = f i (X i )  - ci for 2 < i < n 

which is (5) up to the index i = 1. By (23) in the key lemma 9 with Z := X 2 + X a  

the numerator of ](X2,  X3, X1) = g (X2) + G(X3) + f l  (X1) is reducible. Applying 

the key lemma to ] and proceeding as above, the equivalent of (31) shows that  

G and f l  - c: are composed by an additive polynomial L of degree > 1 

(32) G = L(gx), f l  = L(hl)  + cl 



160 W.-D.  G E Y E R  Isr. J. Math .  

(in the inseparable case is L = G). Substituting hi =: gl o hi for i > 1 we get 

from (31) and (32) the equations (5). 

To finish the proof of theorem B we have to show (6). The application of the 

key lemma to ] above gives by (23) that the polynomial P(Z, X2) = L(Z) + cl -}- 

G(X2)+9(O) is reducible. By (22*) and lemma 6.c we have ~ i~2  c i -g(0)  = G(u) 
n n with u = ~ i=2  ui. So P(X,  u) = L(X)  + ~-~i=1 ci is reducible. | 

Remark: One can avoid the change from G to L in (32) if one chooses in the 

key lemma 9, i.e. in equation (22), a rational function 9 of minimal degree (of 

course _> 2). | 

8. P r o o f  o f  T h e o r e m  C ( N e c e s s i t y )  " 

Let k be an imperfect field of characteristic 2 and let n _> 3. As in w we start 

with nonconstant rational functions fi �9 k(X), represented elements ci, assume 

that ~ i~1  f i(Xi) is reducible and apply the key lemma 9, getting functions g 

and h. We have to find functions g, hi �9 k(X) which satisfy (5*) and (6*) where 

g has one of the forms a), b) or C) in theorem C. If the woof  in w goes through, 

then (5*) and (6*) hold with g being an additive polynomial of degree > 1, i.e. 

case a) of theorem C. It remains to check those points of the proof in w where 

the argument fails for an imperfect field of characteristic 2. In these cases we will 

come to cases b) and c) of theorem C. 

Using the remark at the end of w we choose 9 in lemma 9 of minimal degree 
n >_ 2. Moreover we set c := ~i=1 ci and distinguish the cases 9' ~ 0 and g' = 0. 

First Case 9' r 0: The exception in proposition 11 is the case 

a 

g ' ( t ) - t 2 + b  O r  b E k ,  b ~ k  2 

In the larger field kl = k(/3) with/32 = b the proof of proposition 11 (and then the 

whole proof of theorem C for this case) goes through, together with proposition 

14 we get: The linear fractional transformation l(t) = at -1 +/3 gives a polynomial 

gt(t) = g(at-t+/3) �9 kl[X] with g~(t) = 1. By lemma 8 the separable polynomial 

G(t) = gl(at) + 91(0) = g(t -1 +/3) + g(oo) �9 kl[Z] is additive, so 

m 

a(t)  = Z ( a j  + aj, bj �9 k 
j=O 
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with 

(33) 

To see the effect of (33) for the coefficients of G we write 

= a s + fib s ao + flbo al + fib1 + a j + l  + f lbj+l 

S=o (t + fl)2---------~ - t +-------~ + t 2 +------~ = (t 2 + b) 2j 

= (ao +/~bo)t + al + bbo +/~(ao + bl) m-..1 
t 2 + b + ~ a j+ l  +/3bs+; 

.= (t 2 + b) 2~ 

This sum is in k(t) iff 

ao = bl, bo = b2 . . . . .  b m =  0 

and the separabil i ty means ao r 0. After an affine subst i tu t ion t := aot + al /ao 

we see tha t  the t ransformed g satisfies 

t 
g(t) = g(t) + g(cx)) with e(t) - t2 + b------~o + i=1 (t2 + b~ 

where ~j �9 k, bo �9 k \ k 2, so g is a function of case b) of theorem C. Over kl, 

i.e. by case a) of theorem C, we have for 1 < i < n representat ions 

]i - c~ = G(h~) with hi �9 k l ( t )  

They  induce with a linear fractional t ransformat ion hi of hi representat ions 

f ~ -  ci = g(hi) - 2 hl 
h i + bo 

~j 

- -  + ~ (hl J-bo) 2j j = l  

with hi E k l ( t )  

Since the left hand side is in k(t) and h 2 E k(t) ,  we see from the first summand  

of the right hand side tha t  hi E k(t)  holds. This gives (5*). 

The  proof  of (6*) in the case c r 0 runs parallel to the corresponding proof  

of (6) at the end of w From the key lemma 9 we have 

n 

e(h(X2,..., Xn)) = ~ f~(Xl) + g(~) 
i=2 
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This shows that  the f~ have no k-rational pole since g has none, so the represented 

elements ci are values of f i .  Therefore there is some d E k U {oo} with 

g(d) = ~ ci + g(oc) 
i=2 

Moreover (23) in the key lemma gives the reducibility of 

(34) t ( Z )  + g(c~) + f l ( X l )  = g(Z) + t(d)  + l ( h l ( X l ) )  + c 

In the right hand side of (34) we substitute for X1 a constant in k, which preserves 

the Z-degree of the numerator, and use the addition formula (12) for g to get the 

reducibility of 

A ( Z )  
(35) e ( z )  + ~(~) + ~ - 

B ( Z )  

for some e �9 k. By (12) we h a v e / ( Z )  + e(e) = g(X) with X = (eZ + b ) / ( Z  + c). 

To get (6"), i.e. the reducibility of e ( X ) +  e, we only have to check that  the linear 

fractional involution X = U / V  with U = eZ  + b = eV  + e 2 + b preserves the 

reducibility of A / B .  From c ~ 0 follows A(e)  r 0 by (35). So we see from lemma 

1.a that  for a nonconstant factor A1 of A also AI(U,  V)  is nonconstant, since 

U - bV is only constant for b = e and this b is not a zero of A1. From lemma 1.b 

follows now that a nontrivial factorization of A implies a nontrivial factorization 

of A(U, V) .  This gives (6*). | 

Second Case g' = O: The exception in proposition 15 is the case 

- a-----a---+e=:~(t)+e, O r 1 4 9  b ~ k  2 g(t) - t2 + b 

From the key lemma 9 we have 
n 

(22**) e ( h ( X 2 , . . .  ,Xn))  = ~ f i ( X i )  q- e, e ( h l ( X ) )  = f l ( X )  -[- e 

As in the first case this shows that the represented elements ci are values of f l ,  

say ci = fi(0) by translation of the Xi's. Adding the two equations in (22**) 

and substituting 0 for all Xi we see by the addition formula (10) that  ~ i~1  ci is 

a value of g, which gives (6*). Substituting fi := fl  - ci, we get fi(0) = 0 and 

e = g(hl(0)). So by a linear fractional transformation of h and hi, using (10), we 

may assume e = 0. Then (22**) gives fi = t (h i )  with hi = h (0 , . . . ,  X i , . . . ,  0) 

for 2 < i < n, so (5*). This finishes the proof of theorem C. | 
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9. R a t i o n a l  f u n c t i o n s  w i t h  a n  a d d i t i o n  l aw 

Let g E k(x) be a rat ional  function of one variable. A rat ional  function z E k(x, y) 

in two variables is said to be an a d d i t i o n  law for g, if 

(36) e(x) + e(y) = 

The addit ion law need not be unique. For example, an additive polynomial  g 

has the addi t ion law z = x + y, and also the addit ion law ~ = x + y + a for 

each zero a of g. Similarly, in characteristic 2, bo th  z = (xy + b) / (x  + y) and 

= b(x + y ) / ( xy  § b) are addit ion laws for g(x) = ~-~+b,X see (10'). 

Obviously equat ion (36) is a special case of equation (22) with n = 3, 

9 = f2 = f3 = g and h = z. Therefore the case of characterist ic zero is trivial: 

By corollary 12 we have degg = 1 or g = 0, and by (A4) below all linear fractional 

functions g have an addit ion law. For prime characteristic theorems B and C can 

be used to determine all rat ional functions having an addit ion law. Indeed all 

such functions have essentially already occurred. 

First  let us mention four simple properties of rational functions with an 

addit ion law: 

(A1) The functions g, satisfying (36) with a fixed law z, form a vector space 

over the ground field k. The only constant  function with (36) is the zero function. 

(A2) If  char k = p > 0 then with g also gP has the addit ion law z. Therefore, 

if L is an additive polynomial ,  then with g also L o g has the addit ion law z. 

(A3) Conversely, if L is an additive polynomial  and if L o f has an addit ion 

law, then there is a zero d E k of L such tha t  f ( x )  - d has the same addit ion law. 

Proof." L ( f ( x ) )  + L ( f ( y ) )  = L ( f ( z ) )  implies L ( f ( x )  + f ( y )  - f ( z ) )  = O, so 

f ( x )  + f ( y ) -  f ( z )  = d E k (x ,y )  N k = k and L(d) = O. I 

(A4) I f l ( x )  = ( a x + b ) / ( c x + d )  w i t h a ,  b,c, d E  k a n d a d r  c d i s a M o e b i u s  

t ransformation,  i.e. an au tomorphism of k(x)lk, and if g has the addit ion law z 

then g = g o I has the addit ion law Z(x, y) = 1-1 (z(l(x),  l(y))).  

We met  already two examples of such functions: 

( E l )  In the first example in w we saw tha t  the additive polynomials  (4) have 

the most  simple addit ion law z = x + y. They  form a vector space over k, closed 

under taking pth powers. Among  their Moebius t ransforms they are characterized 

by the following two properties:  Their  only pole is oc, and all vanish for x = 0. 
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(E2) In lemma 2 we found other classes of examples: If k is a field of charac- 

teristic 2, then 

a0 § 5oX x -E-, a~ 
(11) g(x) 

x 2 + ~  § ~ (x 2 § b) 2' 
i----1 

xy  + b k2 with b, 50, ai E k has by (12) the addition law z = If b ~ these 
x §  

functions are not Moebius transforms of additive polynomials since they have 

no rational pole but a single pole with the inseparable quadratic residue field 

kl = k(x/-b). For a fixed b E k \ k s the functions (11) again form a vector space 

over k, closed under taking squares as one sees from 

x ]2 1 b 

- x  2~-b + ( x  ~ + b )  ~ 

Among their Moebius transforms they are characterized by the following two 

properties: Their only pole corresponds to the fixed prime polynomial x 2 + b (i.e. 

a generator, namely v~, of the residue field kl lk  is chosen), and all vanish for 

X ~ O O .  

LEMMA 17: Let ~ be a rational function of degree > 1 with an addition formula 

(36). Then the addition law z is a quotient of two polynomials of the type 

axy § bx + cy + d, but z is not of the type a § b /V(x ,  y). The function ~ has 

a zero in Pl(k) = k U (c~} and has in the algebraic closure k of  k exactly one 

pole ~ E Pl(/C), which is the unique solution of the equation z(~,y) = ~, so is 
~ t  

either rational or inseparable quadratic over k (with p -- 2). The sum Z ~(xi) 

is reducible for n > 2. i=: 

Proof." Taking degrees in (36) and using deg(f(g))  = deg( f ) ,  deg(g) for rational 

functions f ,  g in one variable, we see that the law z is of degree 1 in each of 

its variables, so has the claimed shape. If one would have z = a § b/V,  then 

z(oc, y) = a is a constant, so from (36) one sees that c~ and a would be poles of 

g. In the third step of this proof we will see that this is impossible. 

By iteration of (36) we get rational functions z,~ = z , , ( x : , . . . ,  xu) such that  
n 

~ i = :  ~(x~) = ~(zn). Taking n = p and x: . . . . .  xp we see that  e takes the 

value zero on Pl(k).  

We now prove the claim about the poles of ~. Since g is nonconstant the set 

P:={~ E P:(k); g(~)=cr 
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of geometric poles of g is nonempty. If ~ E P,  equation (36) shows that  z(~, y) is 

a constant in PI,  which is again a pole of g, so 

(37) ~ E P  ~ z(~,y) E P  

Consider z(x, y) as linear fractional function in x over k(y). If g would have 

three geometric poles ~i for i = 1, 2, 3, then the function z is determined by the 

three values z(~i,y) E P C_ Pl(k),  so would not depend on y, a contradiction. 

If g would have two poles, by (A4) we can assume, possibly after an algebraic 

extension of k, they are 0 and co. Then for x E {0, oc} we have z(x, y) E {0, co} 

by (37). By symmetry  the same holds for y. Hence z has the form ax6y ~ with 

6, ~ = =t=l. But g, having only poles at 0 and oo, is of the form g(x) = ~-~=-m a~ x~ 

with m, n > 0, so (36) becomes an equation 

• ai(x i + y i )  ~ i i6 iE -= aia x y 
i = - - m  i = - - m  

which is absurd. This shows the uniqueness of the pole ~ of g. From (37) we see 

that  this pole must be a solution of z(~, y) = ~, the converse is true by (36), so 

this at most quadratic equation in ~ has only one root in P1. 

Finally we show the reducibility of 

n 

i = l  

n > l  

If z is a polynomial, then z(oo, y) = c~, so ~ is the pole of g, so g is a polynomial. 

Having a rational zero, g is reducible, so g(zn) is reducible. 

Now let z = U/V  with V ~ k and g = A / B .  From z ~ a + b /V we see that  

U ~ k + kV.  If  g is reducible, we can apply lemma 1.el, to get the reducibility of 

g(z~). In the remaining case g is irreducible. Since g has a rational zero in P1 (k), 

either g(cc) = 0 or degA = 1. In the second case also g(cc) = 0 holds, because 

degg > 1. Now apply lemma 1.e2 to see that  g(z~) is reducible. | 

THEOREM D: Let g E k(x) be a rational function with an addition law. If  g 

is a polynomial, it is after a translation x := x - d additive, i.e. of  form (4). 

In genera/, modulo a Moebius transformation of the variable, g has one of the 

following forms: 

a) c h a r k = 0 :  g ( x ) = x o r  g=O. 
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b) char k = p and k = k 2 in case p = 2 : g is an additive polynomiM. 

c) char k = 2 and k ~ k 2 : Then g is an additive polynomial  or has the shape 

(11) with b E k \ k 2 and 50, a j E k f o r 0 < _ j < _ m .  

Proo~ I f g ~ 0 i s a p o l y n o m i a l ,  f r o m l e m m a 8 w i t h m =  2, G =  f l  = f2 = g  

and h = z follows that  g(x) = L(x) + c with L as in (4). So equation (36) has 

the form L(x)  + L(y)  + c = L(z), which implies z - x - y = d E k with c = L(d).  

Hence g(x) = L(x  + d) and therefore g(x - d) = L(x)  is additive. 

Now let g r 0 be arbitrary. The case a) of characteristic zero was already 

done before (A1). So let chark  = p > 0. If  g is of degree 1, we get the result of 

case a). So let g have a degree > 1. By lemma 17 the sum g(xx) + g(x2) +g(x3) is 

reducible and g represents 0. So by theorem B, resp. C, with fi -- g and c~ = 0, 

we get a decomposition 

(38) g =  go(h) with h e k(x)  

of g with a special function go of type (El)  or (E2). 

Proof  of  b) (Application of  theorem B): Here go is an additive polynomial. By 

(A3) we can change h by adding a rational zero of go such that  (38) holds and 

h has the same addition law. Since deg h < deg g, by induction on the degree 

of g we can assume h being the Moebius transform of some additive polynomial. 

So after a Moebius transformation as in (A4) we may assume h to be additive. 

Then also g is an additive polynomial. 

Proof  of  c) (Application of  theorem C): Let k be a field of characteristic 2 with 

k r k 2. If go is an additive polynomial, we can conclude as in the proof of 

b), since both examples (El)  and (E2) are closed under composition with an 

additive polynomial. Otherwise go is of type (11) which combines cases b) and 

c) of theorem C. We write to(X) = A / B  with A E k[x] and B = (z 2 + b) 2"~, and 

h = U / V  with U, V E k[x] relatively prime. Since go has no rational pole we have 

ordo~ go _> 0. Prom (7) and (38) follows a reduced representation 

N 
(38*) g(x) = (U 2 + bV2)2,~ with N e k[x] 

with m > 1. From part  b) we know already that  in some purely inseparable 

extension kl of k we have g(x) = L( l (x) )  where L C kl[X] is additive, say of 
m I degree 2 , and l(x) = (ax  + /3 ) / (Tx  + ~) is a linear fractional function in k l (x ) .  
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Since g is no polynomial, 1 is no polynomial and we put 7 = 1. Comparing 

the denominator of (38*) and the denominator (x + ~) 2"~' of L o l we get with 

r := m ~ - m > 0 the equation 

U 2 + b V  2 = e ( x + 5 )  2~ = e x  2"+~5  2~, s E k ~  ( 

Since b ~ k 2, it follows from this that U and V are linear combinations of 1 and 

x q with q = 2 ~- 1, so we have 

h(x)  = l l ( x  q) with l l (x )  - aox + al e k (x )  \ k 
a2x q- a3 

Now the finite poles ~ of e in (38*) are given by the equation U(~)2 + bV(~) 2 = 0, 

SO 

(39) h ( ~ ) 2 = b  

Denoting by/2(x)  :=/l(v/-X)2 the fractional linear function with the coefficients 

a 2, and defining b2 E k \ k 2 by b =/2(b2), equation (39) is equivalent to 

/2(~2q)=b i.e. ~2q =b2 

By lemma 17 the rational function g has a single pole which is at most quadratic 

over k. So we get q = 1. Therefore h = 11 is of degree 1 and g(X) = go(/l(X)) is 

a Moebius transform of some function of type (11). | 

Remark:  The classification, modulo Moebius transforms, of rational functions 

with an addition law, done in theorem D, does not single out unique represen- 

tatives modulo Moebius transforms: On the space of additive polynomials still 

operates the one dimensional group {x  ~-* ax  ; a E k} of Moebius transforma- 

tions. In contrast, in the space of the functions in (11) with fixed b E k \ k 2 to 

any element there are only finitely many Moebius equivalent ones. | 
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